C++ Inheritance



The derived class inherits the
features from the base class and

can have additional features of its
own.

Base
For example, Class
Here, the Dog class is derived from

the Animal class.

Since Dog is derived from Animal,
members of Animal are accessible
to Dog.

Derived
Class




C++ Inheritance

class Animal {
// eat() function Base
// sleep() function Class

class Dog : public Animal {
// bark() function

i

Derived
Class




#include <iostream= // derived class
using namespace std; class Dog : public Animal {
// base class pUh};C; o
class Animal { vora bar ., )
cout << "I can bark! Woof woof!!" =< endl:
¥

public: Y-
vold eat() {
cout << "I can eat!” << endl;

int main() {
// Create object of the Dog class

Dog dogl;
¥
// Calling members of the base class
vold sleep() { dogl.eat();
cout << "I can sleep!” << endl; dogl.sleep();
1- ’ // Calling member of the derived class

dog1.bark();

return 0;
¥



class Animal { // base class int main()

public: {
void eat() Dog dogl; // Create object of the Dog class
{ // Calling members of the base class
cout << "l can eat!" << end|; dogl.eat();
} dogl.sleep();
void sleep() // Calling member of the derived class
{ dogl.bark();
cout << "l can sleep!"” << end|; return O;
} }
b
class Dog : public Animal // derived class
{ Output
public:
void bark()
{ I can eat!

I can sleep!
I can bark! Woof woof!!

cout << "l can bark! Woof woof!!" << endlI;

}

1.




class Animal
{
public:

void eat()

{

cout<<" | can eat'<<endl;

}

void sleep()

{

cout<<" | can sleep”<<endl;

}
b

class dog : public Animal
{
public:

void bark()
{
cout<<" | can bark! woof woof!"<<endl;
}
b

class cat : public Animal

{
public:

void sound()

{

cout<<" | sound like meow meow!"<<endl;

b




void main()

{

dog d; catc;

cout<<“l am a Dog”<<endl;
d.eat();

d.sleep();

d.bark();

cout<<“l am a Cat”<<endl;
c.eat();

c.sleep();

c.sound();

}



C++ Multiple, Multilevel and

Hierarchical Inheritance



C++ Inheritance

* |t allows software developers to derive a new class
from the existing class.

* The derived class inherits the features of the base
class (existing class).

* There are various models of inheritance in C++
programming.




C++ Multilevel Inheritance

* |n C++ programming, not only you can derive a class from the base
class but you can also derive a class from the derived class. This
form of inheritance is known as multilevel inheritance.

class A {

1 -
¥

class B: public A -

 Here, class B is derived from the base class A and the class C is
derived from the derived class B.



#include <iostream= C++ MU'tilEVEl Inheritance

using namespace std;

class A {
public:
void display() {
cout<<"Base class content.”;

¥
¥
class B : public A {};

class C : public B {};

Output

int main() {
C obj;
obj.display();
return 0; Base class content.




In this program, class C is derived from class B (which is derived from
base class A).

The obj object of class C is defined in the main() function.

When the display() function is called, display() in class A is executed.
It's because there is no display() function in class C and class B.

The compiler first looks for the display() function in class C. Since the
function doesn't exist there, it looks for the function in class B (as C is
derived from B).

The function also doesn't exist in class B, so the compiler looks for it
in class A (as B is derived from A).

If display() function exists in C, the compiler overrides display() of
class A (because of member function overriding).




C++ Multiple Inheritance

In C++ programming, a class can be derived from more than one
parent.

For example, A class Bat is derived from base
classes Mammal and Winged Animal.

It makes sense because bat is a mammal as well as a winged animal.

WingedAnimal




#include <iostream>
using namespace std;

class Mammal {
public:
Mammal() {
cout << "Mammals can give direct birth." << endl;
¥
¥:

class WingedAnimal {
public:
WingedAnimal() {
cout << "Winged animal can flap." << endl;

¥
¥:

class Bat: public Mammal, public WingedAnimal {};
int main() {

Bat b1;
return 0;

Inheritance in
C++

Programming

Output

Mammals can give direct birth.
Winged animal can flap.




Ambiguity in Multiple

Inheritance C laﬂfl&aze‘i {
public:

vold someFunction{ ) {....}

The most obvious problem
with multiple inheritance
occurs during function
overriding.

Suppose, two base classes

1 =
T
class base? {
vold someFunction( ) {....}

-. n
T

ha\{e aosame funCt.iOn . class derived : public basel, public base2 {};
which is not overridden in

derived class. int main() {

If you try to call the derived obj;

function using the object obj.someFunction() // Error!
of the derived class,
compiler shows error. It's
because compiler doesn't
know which function to
call. For example,




C++ Hierarchical Inheritance

If more than one class is inherited from the base class, it's
known as hierarchical inheritance.

In hierarchical inheritance, all features that are common in
child classes are included in the base class.

For example, Physics, Chemistry, Biology are derived from
Science class.

Similarly, Dog, Cat, Horse are derived from Animal class.




Syntax of Hierarchical Inheritance

base class {
first_derived class: public base_class {

second_derived_class: public base_class {

third_derived class: public base_class {




// C++ program to demonstrate hierarchical inheritance

#include <iostream:=
using namespace std;

// base class
class Animal {
public:
void info{) {
cout << "I am an animal.” << endl;
¥
e

/f derived class 1

class Dog : public Animal {
public:
vold bark{) {

cout << "I am a Dog. Woof woof." << endl;

I
-

// derived class 2
class Cat : public Animal {
public:
void meow() {
cout << "I am a Cat. Meow."” << endl;

¥

int main{) {

// Create object of Dog class

Dog dogl;

cout << "Dog Class:"™ << endl;
dogl.info(): // Parent Class function
dog1.bark():

// Create object of Cat class

Cat cat1i;

cout << "\wnCat Class:"” << endl;
catl.info(); // Parent Class function
catl.meow():

L]

return 0;

Dog Class:
I am an animal.
I am a Dog. Woof woof.

Cat Class:
I am an animal.
I am a Cat. Meow.



HYBRID INHERITANCE

Class A

Class B : i ‘; Class C |
Class D




class A

C++ Hybrid Inheritance Syntax §

class D : public B, public C



class vehicle class Racing

{ {
. public:
pUbllc. Racing()
vehicle() {
{ cout<< "This is for Racing\n";
cout<< "This is a vehicle\n"; 1 }
} class Ferrari: public Car, public Racing
b {
class Car: public vehicle public:
{ Ferrari()
: {
pUbIIC' cout<< "Ferrari is a Racing Car\n";
Car() }
{
cout<< "This is a car\n"; Z o
) void main()
{
}; Ferrari f;

}



C++ Multiple, Multilevel and

Hierarchical Inheritance



C++ Inheritance

* |t allows software developers to derive a new class
from the existing class.

* The derived class inherits the features of the base
class (existing class).

* There are various models of inheritance in C++
programming.




C++ Multilevel Inheritance

* |n C++ programming, not only you can derive a class from the base
class but you can also derive a class from the derived class. This
form of inheritance is known as multilevel inheritance.

class A {

1=
I

class B: public A {

1=
I

class C: public B {

 Here, class B is derived from the base class A and the class C is
derived from the derived class B.



C++ Multilevel Inheritance

- main() { Output
C obj;

obj.display();

Base class content.




In this program, class C is derived from class B (which is derived
from base class A).

The obj object of class Cis defined in the main() function.
When the display() function is called, display() in class A is

e
C

xecuted. It's because there is no display() function in class C and
lass B.

The compiler first looks for the display() function in class C. Since

t
C

ne function doesn't exist there, it looks for the function in
ass B (as Cis derived from B).

The function also doesn't exist in class B, so the compiler looks for

it in class A (as B is derived from A).
If display() function exists in C, the compiler overrides display() of

C

lass A (because of ).



C++ Multiple Inheritance

* In C++ programming, a class can be derived from
more than one parent. For example, A class Bat is

derived from base
classes Mammal and WingedAnimal. It makes sense

because bat is a mammal as well as a winged

animal.

Multiple Inheritance



include <iostream=

“lass WingedAnimal {

class Bat: public Mammal, public WingedAnimal {};

int main{) {

Example 2:
il Multiple

Mammal() {

: cout << "Mammals can give direct birth." << endl; Inheritance in
C++

WingedAnimal() {
cout << "Winged animal can flap." << endl;

t

Programming

Output

Mammals can give direct birth.

Bat b1;
PSR Winged animal can flap.




Ambiguity in Multiple
Inheritance

The most obvious problem
with multiple inheritance

occurs during function
overriding.

Suppose, two base classes

have a same function S T
which is not overridden in

derived class. int main() {

If you try to call the derived obj;

function using the object obj.someFunction() // Error!
of the derived class, :

compiler shows error. It's
because compiler doesn't
know which function to
call. For example,




* This problem can be solved using the scope
resolution function to specify which function

int main() {
obj.basel::someFunction( ); // Function of base

class i1s called
class 1s called.

1
obj.base2: :someFunction(); // Function of base?




C++ Hierarchical Inheritance

* If more than one class is inherited from the base
class, it's known as . In
hierarchical inheritance, all features that are

common in child classes are included in the base
class.

 For example, Physics, Chemistry, Biology are
derived from Science class. Similarly, Dog, Cat,
Horse are derived from Animal class.



Syntax of Hierarchical Inheritance

base class {
first_derived class: public base_class {

second_derived_class: public base_class {

third_derived_class: public base_class {




// C++ program to demonstrate hierarchical inheritance

#include <iostream:=

51NEg Ndmespdce std;

/f base class
class Animal {
yoid info{) {
cout =<

T

/f derived class
class Dog : '

1 5 7 w
-

vold bark() {

cout <<
1
"
/f derived class 2
class Cat : public
/o0id meow() {
cout <<

"1

1

i

2 |

am a Dog.

il

[=i]

(!

[wi]

ic Animal {

Animal {

'_|.

am an animal.”

. Meow.™

Woof woof.

<< endl;

<< endl;

" << endl:

int main{) {
// Create object of Dog class
Dog dogl;
cout << "Dog (Class:"™ << endl;
dogl.info(): // Parent Class function
dogl.bark():

// Create object of Cat class

Cat cati;

cout << "\nCat Class:™ << endl;
catl.info(); // Parent Class function
catl.meow():

Dog Class:
I am an animal.
I am a Dog. Woof woof.

Cat Class:
I am an animal.
I am a Cat. Meow.




HYBRID INHERITANCE

* Here, both the Dog and Cat classes are
derived from the Animal class. As such, both

the derived classes can access
the info() function belonging to
the Animal class.



el N




C++ Hybrid i
Inheritance Syntax e VTS

class D : public B, public C

F._l



#tinclude<iostream.h> classC int main()

#include<conio.h> { {

class A public: clrscr();

{ inty; D sparrowl,
C() sparrowl.sum();

PUb“C: { return 0;

Int X; y = 356; }

b } )

class B: public A class D: public B, public C

{ . |{oublic:

public: void sum()

B() {

{ cout<<"SUM = sparrow =" << x +y;

X =344; 37



C++ Public, Protected and
Private Inheritance




program to demonstrate public access modifier

#include <iostream>

class Circle

{

public:
double radius;
double areal)

{

// accessing public data member outside class
int main()

{
Circle obj;

obj.radius = 5.5;

cout << "Radius is: " << obj.radius << "\n";
cout << "Area is: " << obj. area();

return O;

}

return 3.14 * radius * radius;

}




program to demonstrate public access modifier

#include<iostream.h> class child : public parent

{
public:

void setv(int b)

{

#tinclude<conio.h>
class parent

{

protected:

int a;

b

a=b;

}

void displayv()
{

void main()
{
clrscr();

child c1;
cl.setv(50);
cl.displayv();
getch();

}

cout<<"Protected Value of a is:"<<a<<endl;

}
b




Public, protected and private inheritance

Public, protected, and private inheritance have the following features:

Public inheritance makes public members of the base class public in the
derived class, and the protected members of the base class remain protected in
the derived class.

Protected inheritance makes the public and protected members of the base
class protected in the derived class.

Private inheritance makes the public and protected members of the base
class private in the derived class.

Note: private members of the base class are inaccessible to the derived class.



class ProtectedDerived: protected Base {
// x 1s protected
// y 1s protected
/f z 15 not accessible from ProtectedDerived

} 3
class Base {
public: class PrivateDerived: private Base {
int ox; // x 1s private
protected: // y 1s private
| int y; /f z 15 not accessible from PrivateDerived
private: 1

int z;

|

class PublicDerived: public Base {
// x 1s public
// y 1s protected
// z 15 not accessible from PublicDerived

i




// C++ program to demonstrate the working of public inheritance _

#include <iostream>
using namespace std;

class Base {
private:
int pvt = 1;

protected:
int prot = 2;

public:
int pub = 3;

int main() {

// function to access private member
int getPVT() {
return pvt;

e

class PublicDerived : public Base {
public:
// function to access protected member from Base
int getProt{) {
return prot;

- g

PublicDerived objectl;

cout << "Private = " << objectl.getPVI(
cout << "Protected = " << objecti.getPr
cout << "Public = " << objectl.pub =< e
return 0;

Private = 1
Protected = 2
Public = 3



Here, we have
derived PublicDerived from Base in public mode.

As a result, in PublicDerived:

prot is inherited as protected.

pub and getPVT() are inherited as public.
pvt is inaccessible since it is private in Base.

Since private and protected members are not
accessible from main(), we need to create public
functions getPVT() and getProt() to access them:



Accessibility in public Inheritance

A private protected
Accessiblility
members members
Base Class Yes Yes
Derived
No Yes

Class

public
members

Yes

Yes



// Error: member "Base::pvt" 1s 1naccessible
cout << "Private = " << objectl.pvt;

// Error: member "Base::prot" 1s 1naccessible
cout << "Protected = " << objectl.prot;

* Notice that the getPVT() function has been defined inside Base. But
the getProt() function has been defined inside PublicDerived.

 This is because pvt, which is private in Base, is inaccessible
to PublicDerived.

* However, prot is accessible to PublicDerived due to public inheritance.
So, getProt() can access the protected variable from within PublicDerived.



Accessibility in public Inheritance

o private protected
Accessibility
members members
Base Class Yes Yes
Derived
No Yes

Class

public
members

Yes

Yes



// C++ program to demonstrate the working of protected inheritance

~lass ProtectedDerived : protected Base {

-
]

- _— = ~cpace Std, fr AR 15 . |
i // function to access protected member from Base
class Base { i %?Eft?t;igi_
ivate * :

// Tunction to access public member from Base

L1 cCcteda int oceat E'::i 10
int prot = 2; AL BETEUDR Y .
return pub;
'
1t pub = 3; L
nain{) {
// function to access private member ProtectedDerived objecti;
int getPVT({) { cout << "Private cannot be ggcecced " <<
return pvt; cout << "Protected = " << oIl
1 cout << "Public = " << obje¢
’i return 0; Private cannot be accessed.

Protected = 2
Public = 3




Here, we have derived ProtectedDerived from Base in protected mode.
As a result, in ProtectedDerived:

prot, pub and getPVT() are inherited as protected.

pvt is inaccessible since it is private in Base.

As we know, protected members cannot be directly accessed from outside
the class. As a result, we cannot use getPVT() from ProtectedDerived.

That is also why we need to create the getPub() function
in ProtectedDerived in order to access the pub variable.

fr Errﬂr' memher "Base: :getPVT()" 1s 1naccessible
cout << << objectl1.getPVT();

// Error: member "Base::pub™ 1s 1naccessible

cout << "Public = " << objectl.pub;




Accessibility in protected Inheritance

o private protected
A bil
CRESITEY members members
Base Class Yes Yes
Derived
No Yes

Class

public members

Yes

Yes (inherited as protected
variables)



// C++ program to demonstrate the working of private inheritance

¥include <i1ostream=
> std;

crlass Base {

-
="

int pub = 3;

// function to access private member
5etPVI() 4
eturn pvt;




class PrivateDerived : private Base {

// function to access protected member from Base
nt getProt() {
= prot;

// function to access private member

getPub() {
eturn pub;
¥
o
RITREY o
PrivateDerived objecti; Output
cout << "Private cannot be accessed.” << endl;
cout << "Protected = " << objectl.getProt() << endl;
CONE v YpabT s W ﬂbject1.getPub{} << endl: Private cannot be accessed.

Protected = 2
Public = 3

U,




Here, we have derived PrivateDerived from Base in private mode.
As a result, in PrivateDerived:

prot, pub and getPVT() are inherited as private.
pvt is inaccessible since it is private in Base.

As we know, private members cannot be directly accessed from
outside the class. As a result, we cannot
use getPVT() from PrivateDerived.

That is also why we need to create the getPub() function
in PrivateDerived in order to access the pub variable.

// Error: member "Base::getPVT()" 1s 1naccessible
cout << "Private = " << objectl.getPVI();

// Error: member "Base::pub"™ 1s 1naccessible
cout << "Public = " << objectl.pub;




Accessibility in private Inheritance

e rivate
Accessibility . protected members
members
Base Class Yes Yes
Derived N Yes (inherited as
o : _
Class private variables)

public members

Yes

Yes (inherited as
private variables)



