

• The derived class inherits the
features from the base class and
can have additional features of its
own.

• For example,• For example,
• Here, the Dog class is derived from

the Animal class.
• Since Dog is derived from Animal,

members of Animal are accessible members of Animal are accessible
to Dog.

Simple Example of C++ Inheritance

class Animal { // base class
public:

void eat()
{

cout << "I can eat!" << endl;
}
void sleep()

int main()
{

Dog dog1; // Create object of the Dog class
// Calling members of the base class
dog1.eat();
dog1.sleep();
// Calling member of the derived classvoid sleep()

{
cout << "I can sleep!" << endl;

}
};
class Dog : public Animal // derived class
{

// Calling member of the derived class
dog1.bark();
return 0;

}

{
public:
void bark()
{

cout << "I can bark! Woof woof!!" << endl;
}

};

class Animal
{
public:
void eat()
{

class dog : public Animal
{
public:
void bark()
{
cout<<" I can bark! woof woof!"<<endl;{

cout<<" I can eat"<<endl;
}
void sleep()
{

cout<<" I can bark! woof woof!"<<endl;
}
};

class cat : public Animal
{
public:{

cout<<" I can sleep"<<endl;
}
};

public:
void sound()
{
cout<<" I sound like meow meow!"<<endl;
} };

void main()
{
dog d; cat c;
cout<<“I am a Dog”<<endl;
d.eat();d.eat();
d.sleep();
d.bark();
cout<<“I am a Cat”<<endl;
c.eat();c.eat();
c.sleep();
c.sound();
}

• It allows software developers to derive a new class
from the existing class.

C++ Inheritance

• The derived class inherits the features of the base
class (existing class).

• There are various models of inheritance in C++
programming.programming.

• In C++ programming, not only you can derive a class from the base
class but you can also derive a class from the derived class. This
form of inheritance is known as multilevel inheritance.

C++ Multilevel Inheritance

• Here, class B is derived from the base class A and the class C is
derived from the derived class B.

C++ Multilevel Inheritance

• In this program, class C is derived from class B (which is derived from
base class A).

• The obj object of class C is defined in the main() function.
• When the display() function is called, display() in class A is executed.

It's because there is no display() function in class C and class B.It's because there is no display() function in class C and class B.
• The compiler first looks for the display() function in class C. Since the

function doesn't exist there, it looks for the function in class B (as C is
derived from B).

• The function also doesn't exist in class B, so the compiler looks for it • The function also doesn't exist in class B, so the compiler looks for it
in class A (as B is derived from A).

• If display() function exists in C, the compiler overrides display() of
class A (because of member function overriding).

•

C++ Multiple Inheritance
• In C++ programming, a class can be derived from more than one

parent.
• For example, A class Bat is derived from base • For example, A class Bat is derived from base

classes Mammal and Winged Animal.
• It makes sense because bat is a mammal as well as a winged animal.

Inheritance in
C++

ProgrammingProgramming

• Ambiguity in Multiple
Inheritance

• The most obvious problem
with multiple inheritance
occurs during function
overriding.overriding.

• Suppose, two base classes
have a same function
which is not overridden in
derived class.

• If you try to call the
function using the object
of the derived class,
function using the object
of the derived class,
compiler shows error. It's
because compiler doesn't
know which function to
call. For example,

C++ Hierarchical Inheritance
• If more than one class is inherited from the base class, it's

known as hierarchical inheritance.
• In hierarchical inheritance, all features that are common in • In hierarchical inheritance, all features that are common in

child classes are included in the base class.
• For example, Physics, Chemistry, Biology are derived from

Science class.
• Similarly, Dog, Cat, Horse are derived from Animal class.• Similarly, Dog, Cat, Horse are derived from Animal class.

Syntax of Hierarchical Inheritance

HYBRID INHERITANCE

C++ Hybrid Inheritance Syntax

class vehicle
{
public:
vehicle()

{
cout<< "This is a vehicle\n";

class Racing
{
public:
Racing()

{
cout<< "This is for Racing\n";

}cout<< "This is a vehicle\n";
}

};
class Car: public vehicle
{
public:
Car()

}
};
class Ferrari: public Car, public Racing
{
public:
Ferrari()

{
cout<< "Ferrari is a Racing Car\n";

Car()
{

cout<< "This is a car\n";
}

};

cout<< "Ferrari is a Racing Car\n";
}

};
void main()

{
Ferrari f;
}

• It allows software developers to derive a new class
from the existing class.

C++ Inheritance

• The derived class inherits the features of the base
class (existing class).

• There are various models of inheritance in C++
programming.programming.

• In C++ programming, not only you can derive a class from the base
class but you can also derive a class from the derived class. This
form of inheritance is known as multilevel inheritance.

C++ Multilevel Inheritance

• Here, class B is derived from the base class A and the class C is
derived from the derived class B.

C++ Multilevel Inheritance

• In this program, class C is derived from class B (which is derived
from base class A).

• The obj object of class C is defined in the main() function.
• When the display() function is called, display() in class A is

executed. It's because there is no display() function in class C and
class B.
executed. It's because there is no display() function in class C and
class B.

• The compiler first looks for the display() function in class C. Since
the function doesn't exist there, it looks for the function in
class B (as C is derived from B).

• The function also doesn't exist in class B, so the compiler looks for
it in class A (as B is derived from A).it in class A (as B is derived from A).

• If display() function exists in C, the compiler overrides display() of
class A (because of member function overriding).

•

C++ Multiple Inheritance
• In C++ programming, a class can be derived from

more than one parent. For example, A class Bat is
derived from base derived from base
classes Mammal and WingedAnimal. It makes sense
because bat is a mammal as well as a winged
animal.animal.

•

Example 2:
Multiple

Inheritance in Inheritance in
C++

Programming

• Ambiguity in Multiple
Inheritance

• The most obvious problem
with multiple inheritance
occurs during function
overriding.overriding.

• Suppose, two base classes
have a same function
which is not overridden in
derived class.

• If you try to call the
function using the object
of the derived class,
function using the object
of the derived class,
compiler shows error. It's
because compiler doesn't
know which function to
call. For example,

• This problem can be solved using the scope This problem can be solved using the scope
resolution function to specify which function
to class either base1or base2

C++ Hierarchical Inheritance
• If more than one class is inherited from the base

class, it's known as hierarchical inheritance. In class, it's known as hierarchical inheritance. In
hierarchical inheritance, all features that are
common in child classes are included in the base
class.

• For example, Physics, Chemistry, Biology are • For example, Physics, Chemistry, Biology are
derived from Science class. Similarly, Dog, Cat,
Horse are derived from Animal class.

Syntax of Hierarchical Inheritance

HYBRID INHERITANCE
• Here, both the Dog and Cat classes are Here, both the Dog and Cat classes are

derived from the Animal class. As such, both
the derived classes can access
the info() function belonging to
the Animal class.the Animal class.

C++ Hybrid
Inheritance Syntax

#include<iostream.h>
#include<conio.h>
class A
{
public:

class C
{
public:
int y;
C()
{

int main()
{
clrscr();
D sparrow1;
sparrow1.sum();
return 0;public:

int x;
};

class B: public A
{

{
y = 356;
} };

class D: public B, public C
{

return 0;
}

{
public:
B()
{
x =344;

{
public:
void sum()
{
cout<<"SUM = sparrow =" << x +y;
} };

#include <iostream>

class Circle

// accessing public data member outside class
int main()
{
Circle obj;

class Circle
{
public:

double radius;
double area()

Circle obj;
obj.radius = 5.5;
cout << "Radius is: " << obj.radius << "\n";
cout << "Area is: " << obj. area();
return 0;double area()

{
return 3.14 * radius * radius;
}

};

return 0;
}

#include<iostream.h>
#include<conio.h>
class parent

class child : public parent
{
public:
void setv(int b)

void main()
{
clrscr();
child c1;class parent

{
protected:
int a;
};

void setv(int b)
{

a=b;
}

void displayv()

child c1;
c1.setv(50);
c1.displayv();
getch();
}

}; void displayv()
{
cout<<"Protected Value of a is:"<<a<<endl;
}
};

• Public, protected, and private inheritance have the following features:
Public inheritance makes public members of the base class public in the • Public inheritance makes public members of the base class public in the
derived class, and the protected members of the base class remain protected in
the derived class.

• Protected inheritance makes the public and protected members of the base
class protected in the derived class.

• Private inheritance makes the public and protected members of the base
class private in the derived class.

• Note: private members of the base class are inaccessible to the derived class.

• Here, we have
derived PublicDerived from Base in public mode.

• As a result, in PublicDerived:
• prot is inherited as protected.• prot is inherited as protected.
• pub and getPVT() are inherited as public.
• pvt is inaccessible since it is private in Base.
• Since private and protected members are not

accessible from main(), we need to create public accessible from main(), we need to create public
functions getPVT() and getProt() to access them:

•

• Notice that the getPVT() function has been defined inside Base. But
the getProt() function has been defined inside PublicDerived.

• This is because pvt, which is private in Base, is inaccessible
to PublicDerived.

• However, prot is accessible to PublicDerived due to public inheritance. • However, prot is accessible to PublicDerived due to public inheritance.
So, getProt() can access the protected variable from within PublicDerived.

•

• Here, we have derived ProtectedDerived from Base in protected mode.
• As a result, in ProtectedDerived:
• prot, pub and getPVT() are inherited as protected.
• pvt is inaccessible since it is private in Base.
• As we know, protected members cannot be directly accessed from outside

the class. As a result, we cannot use getPVT() from ProtectedDerived.the class. As a result, we cannot use getPVT() from ProtectedDerived.
• That is also why we need to create the getPub() function

in ProtectedDerived in order to access the pub variable.
•

• Here, we have derived PrivateDerived from Base in private mode.
• As a result, in PrivateDerived:
• prot, pub and getPVT() are inherited as private.
• pvt is inaccessible since it is private in Base.
• As we know, private members cannot be directly accessed from

outside the class. As a result, we cannot
use getPVT() from PrivateDerived.
outside the class. As a result, we cannot
use getPVT() from PrivateDerived.

• That is also why we need to create the getPub() function
in PrivateDerived in order to access the pub variable.

•

